Sobolev Spaces (inbunden)
Format
Inbunden (Hardback)
Språk
Engelska
Antal sidor
320
Utgivningsdatum
2003-06-01
Upplaga
2
Förlag
Academic Press
Medarbetare
A.Adams, Robert / J. F.Fournier, John
Illustrationer
Illustrations
Volymtitel
Volume 140
Dimensioner
235 x 160 x 18 mm
Vikt
640 g
Antal komponenter
1
Komponenter
14:B&W 6 x 9 in or 229 x 152 mm Case Laminate on White w/Gloss Lam
ISSN
00798169
ISBN
9780120441433
Sobolev Spaces (inbunden)

Sobolev Spaces

Pure and Applied Mathematics

Inbunden Engelska, 2003-06-01
1689
  • Skickas inom 10-15 vardagar.
  • Gratis frakt inom Sverige över 199 kr för privatpersoner.
Sobolev Spaces presents an introduction to the theory of Sobolev Spaces and other related spaces of function, also to the imbedding characteristics of these spaces. This theory is widely used in pure and Applied Mathematics and in the Physical Sciences.

This second edition of Adam's 'classic' reference text contains many additions and much modernizing and refining of material. The basic premise of the book remains unchanged: Sobolev Spaces is intended to provide a solid foundation in these spaces for graduate students and researchers alike.

  • Self-contained and accessible for readers in other disciplines
  • Written at elementary level making it accessible to graduate students
Visa hela texten

Passar bra ihop

  1. Sobolev Spaces
  2. +
  3. The Psychology of Totalitarianism

De som köpt den här boken har ofta också köpt The Psychology of Totalitarianism av Mattias Desmet (inbunden).

Köp båda 2 för 1942 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Recensioner i media

"This book can be highly recommended to every reader interested in functional analysis and its applications" --MathSciNet

Övrig information

By Robert A. Adams and John J. F. Fournier

Innehållsförteckning

Includes reviews of real analysis and an extensive treatment of Lebesgue spaces.
Develops at length the intrinsic definition and properties of Sobolev spaces, in particular their imbedding, compact imbedding, interpolation and extension properties.
Provides a thorough treatment of the real interpolation method and its application to Lorentz and Besov spaces.
Includes surveys of other fractional-order spaces (Bessel potentials, Triebel-Lizorkin).
Develops the theory of Orlicz and Orlicz-Sobolev spaces and their imbeddings.