Modeling Approaches and Computational Methods for Particle-laden Turbulent Flows (häftad)
Fler böcker inom
Häftad (Paperback)
Antal sidor
Academic Press
Balachandar, S.
Approx. 100 illustrations (25 in full color); Illustrations, unspecified
Antal komponenter
Modeling Approaches and Computational Methods for Particle-laden Turbulent Flows (häftad)

Modeling Approaches and Computational Methods for Particle-laden Turbulent Flows

Häftad Engelska, 2022-09-01
Ännu ej utkommen – klicka "Bevaka" för att få ett mejl så fort boken boken går att köpa.
Modelling Approaches and Computational Methods for Particle-laden Turbulent Flows introduces the principal phenomena observed in applications where turbulence in particle-laden flow is encountered while also analyzing the main methods for analyzing numerically. The book takes a practical approach, providing advice on how to select and apply the correct model or tool by drawing on the latest research. Sections provide scales of particle-laden turbulence and the principal analytical frameworks and computational approaches used to simulate particles in turbulent flow. Each chapter opens with a section on fundamental concepts and theory before describing the applications of the modelling approach or numerical method.

Featuring explanations of key concepts, definitions, and fundamental physics and equations, as well as recent research advances and detailed simulation methods, this book is the ideal starting point for students new to this subject, as well as an essential reference for experienced researchers.

  • Provides a comprehensive introduction to the phenomena of particle laden turbulent flow
  • Explains a wide range of numerical methods, including Eulerian-Eulerian, Eulerian-Lagrange, and volume-filtered computation
  • Describes a wide range of innovative applications of these models
Visa hela texten

Fler böcker av Shankar Subramaniam

  • Functional Coherence of Molecular Networks in Bioinformatics

    Mehmet Koyuturk, Shankar Subramaniam, Ananth Grama

    Molecular networks provide descriptions of the organization of various biological processes, including cellular signaling, metabolism, and genetic regulation. Knowledge on molecular networks is commonly used for systems level analysis of biologica...

Övrig information

Shankar Subramaniam is a Professor in the Department of Mechanical Engineering at Iowa State University and Founding Director of the Center for Multiphase Flow Research and Education. He received his B. Tech. in aeronautical engineering from the Indian Institute of Technology, Bombay (Mumbai) in 1988 and is a recipient of the President's Silver Medal. He earned his PhD at Cornell University, after an MS in Aerospace Engineering at the University of Notre Dame, USA. Prior to joining the ISU faculty in 2002, Subramaniam was an assistant professor at Rutgers University. He is a recipient of the US Department of Energy's Early Career Principal Investigator award. His areas of expertise are theory, modelling and simulation of multiphase flows including sprays, particle-laden flows, colloids and granular mixtures, turbulence, mixing, and reacting flows. S. Balachandar is currently the William F. Powers Professor and University Distinguished Professor in the Department of Mechanical and Aerospace Engineering at the University of Florida. From 2005 to 2011, he was the Chairman of the department. He is the inaugural Director of the Herbert Wertheim College of Engineering Institute for Computational Engineering (ICE). Professor Balachandar's expertise is in computational multiphase flow, direct and large eddy simulations of transitional, turbulent flows, and integrated multiphysics simulations of complex problems. He is a fellow of the American Physical Society and the American Society of Mechanical Engineers. Professor Balachandar received the Francois Frenkiel Award from the American Physical Society Division of Fluid Dynamics in 1996 and the Arnold O. Beckman Award and the University Scholar Award from the University of Illinois.


1. Introduction Shankar Subramaniam and S. Balachandar 2. Particle dispersion and preferential concentration in particle-laden turbulence Andrew J. Banko and John K. Eaton 3. Physics of two-way coupling in particle-laden homogeneous isotropic turbulence Antonino Ferrante and Said Elghobashi 4. Coagulation in turbulent particle-laden flows Lian-Ping Wang 5. Efficient methods for particle-resolved direct numerical simulation Markus Uhlmann, Jos Derksen, Anthony Wachsy, Lian-Ping Wangz and Manuel Moriche 6. Results from particle-resolved simulations Agathe Chouippe, Aman G. Kidanemariam, Jos Derksen, Anthony Wachs and Markus Uhlmann 7. Modeling of short-range interactions between both spherical and non-spherical rigid particles Anthony Wachs, Markus Uhlmann, Jos Derksen and Damien P. Huet 8. Improved force models for Euler - Lagrange computations Jeremy A. K. Horwitz 9. Deterministic extended point - particle models S. Balachandar and Martin R. Maxey 10. Stochastic models Aaron M. Lattanzi and Shankar Subramaniam 11. Volume-filtered Euler - Lagrange method for strongly coupled fluid particle flows Jesse Capecelatro and Oliver Desjardins 12. Quadrature-based moment methods for particle-laden flows Alberto Passalacqua and Rodney O. Fox 13. Eulerian-Eulerian modeling approach for turbulent particle-laden flows Berend van Wachem 14. Multiscale modeling of gas-fluidized beds Yali Tang and J.A.M. (Hans) Kuipers 15. Future directions Shankar Subramaniam and S. Balachandar