A Guide to Quantum Groups (häftad)
Fler böcker inom
Format
Häftad (Paperback)
Språk
Engelska
Antal sidor
668
Utgivningsdatum
1995-07-01
Upplaga
New e.
Förlag
Cambridge University Press
Medarbetare
Pressley, Andrew N.
Illustrationer
line drawings, appendix
Dimensioner
230 x 155 x 40 mm
Vikt
960 g
Antal komponenter
1
Komponenter
2:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on Creme w/Gloss Lam
ISBN
9780521558846

A Guide to Quantum Groups

Häftad,  Engelska, 1995-07-01
1219
Billigast på PriceRunner
  • Skickas från oss inom 7-10 vardagar.
  • Fri frakt över 249 kr för privatkunder i Sverige.
Since they first arose in the 1970s and early 1980s, quantum groups have proved to be of great interest to mathematicians and theoretical physicists. The theory of quantum groups is now well established as a fascinating chapter of representation theory, and has thrown new light on many different topics, notably low-dimensional topology and conformal field theory. The goal of this book is to give a comprehensive view of quantum groups and their applications. The authors build on a self-contained account of the foundations of the subject and go on to treat the more advanced aspects concisely and with detailed references to the literature. Thus this book can serve both as an introduction for the newcomer, and as a guide for the more experienced reader. All who have an interest in the subject will welcome this unique treatment of quantum groups.
Visa hela texten

Passar bra ihop

  1. A Guide to Quantum Groups
  2. +
  3. The Anxious Generation

De som köpt den här boken har ofta också köpt The Anxious Generation av Jonathan Haidt (inbunden).

Köp båda 2 för 1508 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av Vyjayanthi Chari

Recensioner i media

"An ideal guide for both experts and newcomers." American Mathematical Monthly

Innehållsförteckning

Introduction; 1. Poisson-Lie groups and Lie bialgebras; 2. Coboundary Poisson-Lie groups and the classical Yang-Baxter equation; 3. Solutions of the classical Yang-Baxter equation; 4. Quasitriangular Hopf algebras; 5. Representations and quasitensor categories; 6. Quantization of Lie bialgebras; 7. Quantized function algebras; 8. Structure of QUE algebras: the universal R-matrix; 9. Specializations of QUE algebras; 10. Representations of QUE algebras: the generic case; 11. Representations of QUE algebras: the root of unity case; 12. Infinite-dimensional quantum groups; 13. Quantum harmonic analysis; 14. Canonical bases; 15. Quantum group invariants of knots and 3-manifolds; 16. Quasi-Hopf algebras and the Knizhnik-Zamolodchikov equation; Appendix. The Kac-Moody algebras.