A Guide to Quantum Groups (häftad)
Fler böcker inom
Häftad (Paperback)
Antal sidor
New e.
Cambridge University Press
Pressley, Andrew N.
line drawings, appendix
230 x 155 x 40 mm
960 g
Antal komponenter
2:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on Creme w/Gloss Lam
A Guide to Quantum Groups (häftad)

A Guide to Quantum Groups

Häftad, Engelska, 1995-07-01

Just nu 12% rabatt på allt! Använd kod JUNI6

Handla för minst 299 kr, t.o.m. 7 juni. Villkor

  • Skickas inom 7-10 vardagar.
  • Gratis frakt inom Sverige över 199 kr för privatpersoner.
Since they first arose in the 1970s and early 1980s, quantum groups have proved to be of great interest to mathematicians and theoretical physicists. The theory of quantum groups is now well established as a fascinating chapter of representation theory, and has thrown new light on many different topics, notably low-dimensional topology and conformal field theory. The goal of this book is to give a comprehensive view of quantum groups and their applications. The authors build on a self-contained account of the foundations of the subject and go on to treat the more advanced aspects concisely and with detailed references to the literature. Thus this book can serve both as an introduction for the newcomer, and as a guide for the more experienced reader. All who have an interest in the subject will welcome this unique treatment of quantum groups.
Visa hela texten

Passar bra ihop

  1. A Guide to Quantum Groups
  2. +
  3. The Psychology of Climate Change Adaptation

De som köpt den här boken har ofta också köpt The Psychology of Climate Change Adaptation av Anne Van Valkengoed (häftad).

Köp båda 2 för 1378 kr


Har du läst boken? Sätt ditt betyg »

Fler böcker av Vyjayanthi Chari

Recensioner i media

"An ideal guide for both experts and newcomers." American Mathematical Monthly


Introduction; 1. Poisson-Lie groups and Lie bialgebras; 2. Coboundary Poisson-Lie groups and the classical Yang-Baxter equation; 3. Solutions of the classical Yang-Baxter equation; 4. Quasitriangular Hopf algebras; 5. Representations and quasitensor categories; 6. Quantization of Lie bialgebras; 7. Quantized function algebras; 8. Structure of QUE algebras: the universal R-matrix; 9. Specializations of QUE algebras; 10. Representations of QUE algebras: the generic case; 11. Representations of QUE algebras: the root of unity case; 12. Infinite-dimensional quantum groups; 13. Quantum harmonic analysis; 14. Canonical bases; 15. Quantum group invariants of knots and 3-manifolds; 16. Quasi-Hopf algebras and the Knizhnik-Zamolodchikov equation; Appendix. The Kac-Moody algebras.