Time Series with Python (häftad)
Häftad (Paperback / softback)
Antal sidor
Bob Mather
Black & white illustrations
210 x 148 x 12 mm
268 g
Antal komponenter
25:B&W 5.83 x 8.27 in or 210 x 148 mm (A5) Perfect Bound on White w/Gloss Lam
Time Series with Python (häftad)

Time Series with Python

How to Implement Time Series Analysis and Forecasting Using Python

Häftad Engelska, 2020-04-13
  • Skickas inom 7-10 vardagar.
  • Gratis frakt inom Sverige över 199 kr för privatpersoner.
Finns även som
Visa alla 2 format & utgåvor
Are you looking to learn more about Time Series, but struggling to find them in traditional Data Science textbooks?

This book is your answer.

Time Series is an exciting and important part of Data Analysis. Time Series Data is more readily available than most forms of data and answers questions that cross-sectional data struggle to do. It also has more real world application in the prediction of future events. However it is not generally found in a traditional data science toolkit. There is also limited centralized resources on the applications of Time Series, especially using traditional programming languages such as Python.

This book solves all these problems, and more. It starts off with basic concepts in Time Series, and switches to more advanced topics. It shows you how to set up Python from start, and goes through over 20 examples of applying both simple and advanced Time Series concepts with Python code.
Visa hela texten

Passar bra ihop

  1. Time Series with Python
  2. +
  3. Dopamine Nation

De som köpt den här boken har ofta också köpt Dopamine Nation av Dr Anna Lembke (häftad).

Köp båda 2 för 344 kr


Har du läst boken? Sätt ditt betyg »

Fler böcker av Bob Mather


  • What is a Time Series?

  • 4 Different Elements of a Time Series

  • Why Python is the best way to Implement Time Series

  • Step by Step Guide to Installing Python and Importing Time Series Data

  • 6 Different Techniques to Analyze Time Series Data

  • 3 Advanced Time Series Concepts for Time Series Prediction

  • Time Series Visualization Techniques in Python