Cohomology for Quantum Groups via the Geometry of the Nullcone (häftad)
Fler böcker inom
Format
Häftad (Paperback / softback)
Språk
Engelska
Antal sidor
93
Utgivningsdatum
2014-09-22
Förlag
American Mathematical Society
ISBN
9780821891759
Cohomology for Quantum Groups via the Geometry of the Nullcone (häftad)

Cohomology for Quantum Groups via the Geometry of the Nullcone

Häftad Engelska, 2014-09-22
1130
Tillfälligt slut – klicka "Bevaka" för att få ett mejl så fort boken går att köpa igen.
Finns även som
Visa alla 1 format & utgåvor
Let be a complex th root of unity for an odd integer >1 . For any complex simple Lie algebra g , let u =u (g) be the associated "small" quantum enveloping algebra. This algebra is a finite dimensional Hopf algebra which can be realised as a subalgebra of the Lusztig (divided power) quantum enveloping algebra U and as a quotient algebra of the De Concini-Kac quantum enveloping algebra U . It plays an important role in the representation theories of both U and U in a way analogous to that played by the restricted enveloping algebra u of a reductive group G in positive characteristic p with respect to its distribution and enveloping algebras. In general, little is known about the representation theory of quantum groups (resp., algebraic groups) when l (resp., p ) is smaller than the Coxeter number h of the underlying root system. For example, Lusztig's conjecture concerning the characters of the rational irreducible G -modules stipulates that p h . The main result in this paper provides a surprisingly uniform answer for the cohomology algebra H (u ,C) of the small quantum group.
Visa hela texten

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna

Övrig information

Christopher P. Bendel, University of Wisconsin-Stout, Menomonie, Wisconsin. Daniel K. Nakano, University of Georgia, Athens. Georgia, Brian J. Parshall, University of Virginia, Charlottesville, Virginia. Cornelius Pillen, University of South Alabama, Mobile, Alabama.

Innehållsförteckning

Preliminaries and statement of results Quantum groups, actions, and cohomology Computation of 0 and N( 0 ) Combinatorics and the Steinberg module The cohomology algebra H (u (g),C) Finite generation Comparison with positive characteristic Support varieties over u for the modules ( ) and ( ) Appendix A Bibliography