Data-Driven Science and Engineering (e-bok)
Format
E-bok
Filformat
PDF med Adobe-kryptering
Om Adobe-kryptering
PDF-böcker lämpar sig inte för läsning på små skärmar, t ex mobiler.
Nedladdning
Kan laddas ned under 24 månader, dock max 3 gånger.
Språk
Engelska
Utgivningsdatum
2022-04-30
Förlag
Cambridge University Press
ISBN
9781009115636
Data-Driven Science and Engineering (e-bok)

Data-Driven Science and Engineering E-bok

Machine Learning, Dynamical Systems, and Control

E-bok (PDF - DRM), Engelska, 2022-04-30
549
Laddas ned direkt
Läs i vår app för iPhone, iPad och Android
Finns även som
Visa alla 4 format & utgåvor
Data-driven discovery is revolutionizing how we model, predict, and control complex systems. Now with Python and MATLAB(R), this textbook trains mathematical scientists and engineers for the next generation of scientific discovery by offering a broad overview of the growing intersection of data-driven methods, machine learning, applied optimization, and classical fields of engineering mathematics and mathematical physics. With a focus on integrating dynamical systems modeling and control with modern methods in applied machine learning, this text includes methods that were chosen for their relevance, simplicity, and generality. Topics range from introductory to research-level material, making it accessible to advanced undergraduate and beginning graduate students from the engineering and physical sciences. The second edition features new chapters on reinforcement learning and physics-informed machine learning, significant new sections throughout, and chapter exercises. Online supplementary material - including lecture videos per section, homeworks, data, and code in MATLAB(R), Python, Julia, and R - available on databookuw.com.
Visa hela texten

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna

  • Data-Driven Modeling & Scientific Computation

    J Nathan Kutz

    The burgeoning field of data analysis is expanding at an incredible pace due to the proliferation of data collection in almost every area of science. The enormous data sets now routinely encountered in the sciences provide an incentive to develop ...

  • Machine Learning Control - Taming Nonlinear Dynamics and Turbulence

    Thomas Duriez, Steven L Brunton, Bernd R Noack

    This is the first textbook on a generally applicable control strategy for turbulence and other complex nonlinear systems. The approach of the book employs powerful methods of machine learning for optimal nonlinear control laws. This machine learni...