Theory of Differential Equations (inbunden)
Format
Häftad (Paperback)
Språk
Engelska
Antal sidor
356
Utgivningsdatum
2012-07-19
Förlag
Cambridge University Press
Illustrationer
black & white illustrations
Volymtitel
Volume I
Dimensioner
215 x 140 x 20 mm
Vikt
471 g
Antal komponenter
1
Komponenter
1:B&W 5.5 x 8.5 in or 216 x 140 mm (Demy 8vo) Perfect Bound on Creme w/Gloss Lam
ISBN
9781107650244

Theory of Differential Equations

Exact Equations and Pfaff's Problem

Häftad,  Engelska, 2012-07-19
506
  • Skickas från oss inom 7-10 vardagar.
  • Fri frakt över 249 kr för privatkunder i Sverige.
Andrew Russell Forsyth (1858-1942) was an influential Scottish mathematician notable for incorporating the advances of Continental mathematics within the British tradition. Originally published in 1890, this book constitutes the first of six volumes in Forsyth's Theory of Differential Equations series, concentrating specifically on exact equations and Pfaff's problem. The text contains detailed information on the development of these areas and substantial contributions made to them. All sources are quoted in their proper connection and a few fresh investigations are added. Examples are given, where necessary, in order to provide illustrations of various methods. This book will be of value to anyone with an interest in differential equations and the history of mathematics.
Visa hela texten

Passar bra ihop

  1. Theory of Differential Equations
  2. +
  3. A History of World Societies, Combined Volume

De som köpt den här boken har ofta också köpt A History of World Societies, Combined Volume av Merry E Wiesner-Hanks, Patricia Buckley Ebrey, Roger Beck, Jerry Davila, Clare Crowston (häftad).

Köp båda 2 för 1635 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av Andrew Russell Forsyth

Innehållsförteckning

1. Single exact equation; 2. System of exact equations; 3. Historical summary of methods of treating Pfaff's problem; 4. Pfaff's reduction, completed as by Gauss and Jacobi; 5. Grassmann's method; 6. Natani's method; 7. Application to partial differential equations of the first order; 8. Clebsch's method; 9. Tangenital transformations; 10. Lie's method; 11. Frobenius' method; 12. Abstract of Darboux's method; 13. Systems of Pfaffians; Index.