Physical and Cyber Restrictions in Distributed Frequency Control and Beyond
De som köpt den här boken har ofta också köpt Big Cloud av Camille Seaman (inbunden).
Köp båda 2 för 1796 krFeng Liu, PhD, is Associate Professor in the Department of Electrical Engineering at Tsinghua University in Beijing, China. Zhaojian Wang, PhD, is Assistant Professor in the Department of Automation at Shanghai Jiao Tong University in Shanghai, China. Changhong Zhao, PhD, is Assistant Professor in the Department of Information Engineering at the Chinese University of Hong Kong, Hong Kong SAR, China. Peng Yang is a PhD Candidate in the Department of Electrical Engineering at Tsinghua University in Beijing, China.
Foreword xv Preface xvii Acknowledgments xix 1 Introduction 1 1.1 Traditional Hierarchical Control Structure 2 1.1.1 Hierarchical Frequency Control 2 1.1.1.1 Primary Frequency Control 4 1.1.1.2 Secondary Frequency Control 5 1.1.1.3 Tertiary Frequency Control 5 1.1.2 Hierarchical Voltage Control 5 1.1.2.1 Primary Voltage Control 6 1.1.2.2 Secondary Voltage Control 7 1.1.2.3 Tertiary Voltage Control 7 1.2 Transitions and Challenges 7 1.3 Removing Central Coordinators: Distributed Coordination 8 1.3.1 Distributed Control 11 1.3.2 Distributed Optimization 12 1.4 Merging Optimization and Control 13 1.4.1 Optimization-Guided Control 14 1.4.2 Feedback-Based Optimization 16 1.5 Overview of the Book 17 Bibliography 19 2 Preliminaries 23 2.1 Norm 23 2.1.1 Vector Norm 23 2.1.2 Matrix Norm 24 2.2 Graph Theory 26 2.2.1 Basic Concepts 26 2.2.2 Laplacian Matrix 26 2.3 Convex Optimization 28 2.3.1 Convex Set 28 2.3.1.1 Basic Concepts 28 2.3.1.2 Cone 30 2.3.2 Convex Function 31 2.3.2.1 Basic Concepts 31 2.3.2.2 Jensens Inequality 35 2.3.3 Convex Programming 35 2.3.4 Duality 36 2.3.5 Saddle Point 39 2.3.6 KKT Conditions 39 2.4 Projection Operator 41 2.4.1 Basic Concepts 41 2.4.2 Projection Operator 42 2.5 Stability Theory 44 2.5.1 Lyapunov Stability 44 2.5.2 Invariance Principle 46 2.5.3 InputOutput Stability 47 2.6 Passivity and Dissipativity Theory 49 2.6.1 Passivity 49 2.6.2 Dissipativity 51 2.7 Power Flow Model 52 2.7.1 Nonlinear Power Flow 53 2.7.1.1 Bus Injection Model (BIM) 53 2.7.1.2 Branch Flow Model (BFM) 54 2.7.2 Linear Power Flow 55 2.7.2.1 DC Power Flow 55 2.7.2.2 Linearized Branch Flow 56 2.8 Power System Dynamics 56 2.8.1 Synchronous Generator Model 57 2.8.2 Inverter Model 58 Bibliography 60 3 Bridging Control and Optimization in Distributed Optimal Frequency Control 63 3.1 Background 64 3.1.1 Motivation 64 3.1.2 Summary 66 3.1.3 Organization 67 3.2 Power System Model 67 3.2.1 Generator Buses 68 3.2.2 Load Buses 69 3.2.3 Branch Flows 70 3.2.4 Dynamic Network Model 72 3.3 Design and Stability of Primary Frequency Control 74 3.3.1 Optimal Load Control 74 3.3.2 Main Results 75 3.3.3 Implications 79 3.4 Convergence Analysis 79 3.5 Case Studies 88 3.5.1 Test System 88 3.5.2 Simulation Results 89 3.6 Conclusion and Notes 92 Bibliography 93 4 Physical Restrictions: Input Saturation in Secondary Frequency Control 97 4.1 Background 98 4.2 Power System Model 100 4.3 Control Design for Per-Node Power Balance 101 4.3.1 Control Goals 102 4.3.2 Decentralized Optimal Controller 103 4.3.3 Design Rationale 105 4.3.3.1 PrimalDual Algorithms 105 4.3.3.2 Design of Controller (4.6) 105 4.4 Optimality and Uniqueness of Equilibrium 108 4.5 Stability Analysis 112 4.6 Case Studies 120 4.6.1 Test System 120 4.6.2 Simulation Results 122 4.6.2.1 Stability and Optimality 122 4.6.2.2 Dynamic Performance 123 4.6.2.3 Comparison with AGC 124 4.6.2.4 Digital Implementation 124 4.7 Conclusion and Notes 128 Bibliography 131 5 Physical Restrictions: Line Flow Limits in Secondary Frequency Control 135 5.1 Background 136 5.2 Power System Model 137 5.3 Control Design for Network Power Balance 138 5.3.1 Control Goals 139 5.3.2 Distributed Optimal Controller 141 5.3.3 Design Rationale 142 5.3.3.1 PrimalDual Gradient Algorithms 142 5.3.3.2 Controller Design 143 5.4 Optimality of Equilibrium 144 5.5 Asymptotic Stability 148 5.6 Case Studies 155 5.6.1 Test System 155 5.6.2 Simulation Results 156 5.6.2.1 Stability and Optimality 156 5.6.2.2 Dynamic Performance 158 5.6.2.3 Comparison with AGC 158 5.6.2.4 Congestion Analysis 158 5.6.2.5 Time Delay Analysis 161 5.7 Conclusion and Notes 165 Bibliography 165 6 Physical Restrictions: Nonsmoothness of Objective Functions in Load-Frequency Control 167 6.1 Background 167 6.2 Not