Likelihood, Bayesian, and MCMC Methods in Quantitative Genetics (häftad)
Format
Häftad (Paperback / softback)
Språk
Engelska
Antal sidor
740
Utgivningsdatum
2010-12-01
Upplaga
Softcover reprint of the original 1st ed. 2002
Förlag
Springer-Verlag New York Inc.
Medarbetare
Gianola, Daniel
Illustrationer
XVIII, 740 p.
Dimensioner
234 x 156 x 38 mm
Vikt
1044 g
Antal komponenter
1
Komponenter
1 Paperback / softback
ISBN
9781441929976

Likelihood, Bayesian, and MCMC Methods in Quantitative Genetics

Häftad,  Engelska, 2010-12-01
3993
  • Skickas från oss inom 7-10 vardagar.
  • Fri frakt över 249 kr för privatkunder i Sverige.
Likelihood, Bayesian, and MCMC Methods in Quantitative Genetics Kan levereras innan julafton!
Finns även som
Visa alla 2 format & utgåvor
Over the last ten years the introduction of computer intensive statistical methods has opened new horizons concerning the probability models that can be fitted to genetic data, the scale of the problems that can be tackled and the nature of the questions that can be posed. In particular, the application of Bayesian and likelihood methods to statistical genetics has been facilitated enormously by these methods. Techniques generally referred to as Markov chain Monte Carlo (MCMC) have played a major role in this process, stimulating synergies among scientists in different fields, such as mathematicians, probabilists, statisticians, computer scientists and statistical geneticists. Specifically, the MCMC "revolution" has made a deep impact in quantitative genetics. This can be seen, for example, in the vast number of papers dealing with complex hierarchical models and models for detection of genes affecting quantitative or meristic traits in plants, animals and humans that have been published recently. This book, suitable for numerate biologists and for applied statisticians, provides the foundations of likelihood, Bayesian and MCMC methods in the context of genetic analysis of quantitative traits. Most students in biology and agriculture lack the formal background needed to learn these modern biometrical techniques. Although a number of excellent texts in these areas have become available in recent years, the basic ideas and tools are typically described in a technically demanding style, and have been written by and addressed to professional statisticians. For this reason, considerable more detail is offered than what may be warranted for a more mathematically apt audience. The book is divided into four parts. Part I gives a review of probability and distribution theory. Parts II and III present methods of inference and MCMC methods. Part IV discusses several models that can be applied in quantitative genetics, primarily from a bayesian perspective.An effort has been made to relate biological to statistical parameters throughout, and examples are used profusely to motivate the developments.
Visa hela texten

Passar bra ihop

  1. Likelihood, Bayesian, and MCMC Methods in Quantitative Genetics
  2. +
  3. Atomic Habits

De som köpt den här boken har ofta också köpt Atomic Habits av James Clear (häftad).

Köp båda 2 för 4193 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna

  • Statistical Learning in Genetics

    Daniel Sorensen

    This book provides an introduction to computer-based methods for the analysis of genomic data. Breakthroughs in molecular and computational biology have contributed to the emergence of vast data sets, where millions of genetic markers for each ind...

  • Advances in Statistical Methods for Genetic Improvement of Livestock

    Daniel Gianola, Keith Hammond

    Developments in statistics and computing as well as their application to genetic improvement of livestock gained momentum over the last 20 years. This text reviews and consolidates the statistical foundations of animal breeding. This text will pro...

Recensioner i media

From the reviews: BIOINFORMATICS "I found the coverage of material to be excellent: well chosen and well written, and I didnt spot a single typographical errorIt can serve as a resource book for masters-level taught courses, but will be most useful for PhD students and other researchers who need to fill in the gaps in their knowledge, grasp the intuition behind statistical techniques, models, and algorithms, and find pointers to more extensive treatments. Overall, I find that the authors have succeeded admirably in their goals. I highly recommend this excellent book to any researcher seeking a graduate-level introduction to the modern statistical methods applied in quantitative genetics." "Just one personal sentence as an Introduction: I like the book so much that I have decided to include several parts of it in my own lectures. it may be understood more easily by students and researchers that lack a strong background in statistics and mathematics. most examples are nicely explained. Summing up, I am convinced that this excellent book should be a standard book for researchers and students with a background in genetics who are interested in Bayesian and MCMC methods." (Andreas Ziegler, Metrika, February, 2004) "Both authors have made significant contributions to development of statistical methods in quantitative genetics and in particular have been at the forefront of the adoption of MCMC methods for Bayesian analysis, which can be applied to an enormous range of problems . their coverage of likelihood methods is both extensive and fair. this is a valuable book, in that it presents so much background essential for the subsequent application and merits a much broader market that it is likely to get." (William G. Hill, Genetical Research, Vol. 81, 2003) "The coverage of Bayesian theory is extensive, and includes a discussion of information and entropy, and of the notion uninformative priors,as well as model assessment and model averaging. I found the coverage of material to be excellent: well chosen and well written, and I didnt spot a single typographical error. the authors have succeeded admirably in their goals. I highly recommend this excellent book to any researcher seeking a graduate-level introduction to the modern statistical methods applied in quantitative genetics." (David Balding, Bioinformatics, July, 2003) "The book is aimed at students and researchers in agriculture, biology and medicine. Statisticians will appreciate the attempt to relate biological to statistical parameters. In conclusion the book shows that the authors have a lot of experience with applications of statistics to quantitative genetics. Much more details are given in this book than usual, so it can be considered and recommended for classroom use." (Prof. Dr. W. Urfer, Statistical Papers, Vol. 46 (4), 2005) " [T]he book is worth owning for anyone interested in applying likelihood or Bayesian models, especially realistic models that may require MCMC for implementation." (Journal of the American Statistical Associaton)

Innehållsförteckning

Review of Probability and Distribution Theory.- Uncertainty, Random Variables, and Probability Distributions.- Uncertainty about Functions of Random Variables.- Methods of Inference.- An Introduction to Likelihood Inference.- Further Topics in Likelihood Inference.- An Introduction to Bayesian Inference.- Bayesian Analysis of Linear Models.- The Prior Distribution and Bayesian Analysis.- Bayesian Assessment of Hypotheses and Models.- Approximate Inference Via the EM Algorithm.- Markov Chain Monte Carlo Methods.- An Overview of Discrete Markov Chains.- Markov Chain Monte Carlo.- Implementation and Analysis of MCMC Samples.- Applications in Quantitative Genetics.- Gaussian and Thick-Tailed Linear Models.- Threshold Models for Categorical Responses.- Bayesian Analysis of Longitudinal Data.- to Segregation and Quantitative Trait Loci Analysis.