Tunneling Estimates and Approximate Controllability for Hypoelliptic Equations (häftad)
Format
Häftad (Paperback / softback)
Språk
Engelska
Antal sidor
95
Utgivningsdatum
2022-06-30
Förlag
American Mathematical Society
ISBN
9781470451387

Tunneling Estimates and Approximate Controllability for Hypoelliptic Equations

Häftad,  Engelska, 2022-06-30
1332
  • Specialorder (osäker tillgång). Skickas från oss inom 11-20 vardagar.
  • Fri frakt över 249 kr för privatkunder i Sverige.
This memoir is concerned with quantitative unique continuation estimates for equations involving a "sum of squares" operator L on a compact manifold M assuming: (i) the Chow-Rashevski-Hormander condition ensuring the hypoellipticity of L,and(ii) the analyticity of M and the coefficients of L. The first result is the tunneling estimate ?L2(?) ? Ce?c?k 2 for normalized eigenfunctions ? of L from a nonempty open set ? ?M,wherek is the hypoellipticity index of L and ? the eigenvalue. The main result is a stability estimate for solutions to the hypoelliptic wave equation (?2 t + L)u =0:forT>2supx?M(dist(x,?)) (here, dist is the subRiemannian distance), the observation of the solution on (0,T) ? determines the data. The constant involved in the estimate is Cec?k where?isthetypical frequency of the data. Wethen prove the approximate controllability of the hypoelliptic heat equation (?t +L)v = 1?f in any time, with appropriate (exponential) cost, depending on k. In case k = 2 (Grushin, Heisenberg...), we further show approximate controllability to trajectories with polynomial cost in large time. We also explain how the a nalyticity assumption can be relaxed, and a boundary ?Mcan be added in some situations.
Visa hela texten

Passar bra ihop

  1. Tunneling Estimates and Approximate Controllability for Hypoelliptic Equations
  2. +
  3. Behave

De som köpt den här boken har ofta också köpt Behave av Robert M Sapolsky (häftad).

Köp båda 2 för 1482 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna

Övrig information

Camille Laurent, CNRS, Paris, France, and Sorbonne Universite, Paris, France. Matthieu Leautaud, Ecole Polytechnique, Palaiseau, France.