- Format
- Häftad (Paperback / softback)
- Språk
- Engelska
- Antal sidor
- 268
- Utgivningsdatum
- 2016-09-03
- Upplaga
- Softcover reprint of the original 1st ed. 2014
- Förlag
- Springer-Verlag New York Inc.
- Medarbetare
- Comaniciu, Dorin
- Illustrationer
- 25 Tables, black and white; 58 Illustrations, color; 64 Illustrations, black and white; XX, 268 p. 1
- Dimensioner
- 234 x 156 x 15 mm
- Vikt
- Antal komponenter
- 1
- Komponenter
- 1 Paperback / softback
- ISBN
- 9781493955756
- 409 g
Du kanske gillar
-
Marginal Space Learning for Medical Image Analysis
Efficient Detection and Segmentation of Anatomical Structures
1147- Skickas inom 7-10 vardagar.
- Gratis frakt inom Sverige över 199 kr för privatpersoner.
Finns även somPassar bra ihop
De som köpt den här boken har ofta också köpt Braiding Sweetgrass av Robin Wall Kimmerer (häftad).
Köp båda 2 för 1271 krKundrecensioner
Har du läst boken? Sätt ditt betyg »Fler böcker av författarna
-
Deep Learning and Convolutional Neural Networks for Medical Image Computing
Le Lu, Yefeng Zheng, Gustavo Carneiro, Lin Yang
-
Artificial Intelligence for Computational Modeling of the Heart
Tommaso Mansi, Tiziano Passerini, Dorin Comaniciu
-
Statistical Methods in Video Processing
Dorin Comaniciu, Kenichi Kanatani, Rudolf Mester, David Suter
Recensioner i media
"This book presents a generic learning-based method for efficient 3D object detection called marginal space learning (MSL). ... Each chapter ends with a remarkable bibliography on the topics covered. This book is suited for students and researchers with interest in medical image analysis." (Oscar Bustos, zbMATH 1362.92004, 2017)
Innehållsförteckning
Introduction.- Marginal Space Learning.- Comparison of Marginal Space Learning and Full Space Learning in 2D.- Constrained Marginal Space Learning.- Part-Based Object Detection and Segmentation.- Optimal Mean Shape for Nonrigid Object Detection and Segmentation.- Nonrigid Object Segmentation: Application to Four-Chamber Heart Segmentation.- Applications of Marginal Space Learning in Medical Imaging.- Conclusions and Future Work.