Simulation and Synthesis in Medical Imaging (häftad)
Format
Häftad (Paperback / softback)
Språk
Engelska
Antal sidor
140
Utgivningsdatum
2018-09-12
Upplaga
1st ed. 2018
Förlag
Springer Nature Switzerland AG
Medarbetare
Gooya, Ali (ed.), Goksel, Orcun (ed.), Oguz, Ipek (ed.), Burgos, Ninon (ed.)
Illustratör/Fotograf
Bibliographie
Illustrationer
58 Illustrations, black and white; X, 140 p. 58 illus.
Dimensioner
234 x 156 x 8 mm
Vikt
222 g
Antal komponenter
1
Komponenter
1 Paperback / softback
ISBN
9783030005351
Simulation and Synthesis in Medical Imaging (häftad)

Simulation and Synthesis in Medical Imaging

Third International Workshop, SASHIMI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Proceedings

Häftad Engelska, 2018-09-12
703
  • Skickas inom 7-10 vardagar.
  • Gratis frakt inom Sverige över 199 kr för privatpersoner.
Kan levereras innan julafton!
Finns även som
Visa alla 1 format & utgåvor
This book constitutes the refereed proceedings of the Third International Workshop on Simulation and Synthesis in Medical Imaging, SASHIMI 2018, held in conjunction with MICCAI 2018, in Granada, Spain, in September 2018. The 14 full papers presented were carefully reviewed and selected from numerous submissions. This workshop continues to provide a state-of-the-art and integrative perspective on simulation and synthesis in medical imaging for the purpose of invigorating research and stimulating new ideas on how to build theoretical links, practical synergies, and best practices between these two research directions.
Visa hela texten

Passar bra ihop

  1. Simulation and Synthesis in Medical Imaging
  2. +
  3. Myth Of Normal

De som köpt den här boken har ofta också köpt Myth Of Normal av Md Gabor Mate (inbunden).

Köp båda 2 för 947 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna

Innehållsförteckning

Medical Image Synthesis for Data Augmentation and Anonymization Using Generative Adversarial Networks.- Data Augmentation Using synthetic Lesions Improves Machine Learning Detection of Microbleeds from MRI.- Deep Harmonization of Inconsistent MR Data for Consistent Volume Segmentation.- Cross-modality Image Synthesis from Unpaired Data Using CycleGAN: Effects of Gradient Consistency Loss and Training Data Size.- A Machine Learning Approach to Diffusion MRI Partial Volume Estimation.- Unsupervised Learning for Cross-domain Medical Image Synthesis Using Deformation Invariant Cycle Consistency Networks.- Deep Boosted Regression for MR TO CT Synthesis.- Model-Based Generation of Synthetic 3D Time-Lapse Sequences of Multiple Mutually Interacting Motile Cells with Filopodia.- MRI to FDG-PET: Cross-Modal Synthesis Using 3D U-Net for Multi-Modal Alzheimer's Classification.- Tubular Network Formation Process Using 3D Cellular Potts Model.- Deep Learning Based Coronary Artery Motion Artifact Compensation Using Style-Transfer Synthesis in CT Images.- Lung Nodule Synthesis Using CNN-based Latent Data Representation.- RS-Net: Regression-Segmentation 3D CNN for Synthesis of Full Resolution Missing Brain MRI in the Presence of Tumours.- Generating Magnetic Resonance Spectroscopy Imaging Data of Brain Tumours from Linear, Non-Linear and Deep Learning Models.