Graph Learning in Medical Imaging (häftad)
Format
Häftad (Paperback / softback)
Språk
Engelska
Antal sidor
182
Utgivningsdatum
2019-11-14
Upplaga
1st ed. 2019
Förlag
Springer Nature Switzerland AG
Medarbetare
Zhou, Luping / Jie, Biao
Illustrationer
68 Illustrations, color; 19 Illustrations, black and white; IX, 182 p. 87 illus., 68 illus. in color
Dimensioner
234 x 156 x 10 mm
Vikt
277 g
Antal komponenter
1
Komponenter
1 Paperback / softback
ISBN
9783030358167
Graph Learning in Medical Imaging (häftad)

Graph Learning in Medical Imaging

First International Workshop, GLMI 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings

Häftad Engelska, 2019-11-14
703
  • Skickas inom 7-10 vardagar.
  • Gratis frakt inom Sverige över 199 kr för privatpersoner.
Finns även som
Visa alla 1 format & utgåvor
This book constitutes the refereed proceedings of the First International Workshop on Graph Learning in Medical Imaging, GLMI 2019, held in conjunction with MICCAI 2019 in Shenzhen, China, in October 2019. The 21 full papers presented were carefully reviewed and selected from 42 submissions. The papers focus on major trends and challenges of graph learning in medical imaging and present original work aimed to identify new cutting-edge techniques and their applications in medical imaging.
Visa hela texten

Passar bra ihop

  1. Graph Learning in Medical Imaging
  2. +
  3. 48 Laws of Power

De som köpt den här boken har ofta också köpt 48 Laws of Power av R Greene (häftad).

Köp båda 2 för 948 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna

Innehållsförteckning

Graph Hyperalignment for Multi-Subject fMRI Functional Alignment.- Interactive 3D Segmentation Editing and Refinement via Gated Graph Neural Networks.- Adaptive Thresholding of Functional Connectivity Networks for fMRI-based Brain Disease Analysis.- Graph-kernel-based Multi-task Structured Feature Selection on Multi-level Functional Connectivity Networks for Brain Disease Classification.- Linking convolutional neural networks with graph convolutional networks: application in pulmonary artery-vein separation.- Comparative Analysis of Magnetic Resonance Fingerprinting Dictionaries via Dimensionality Reduction.- Learning Deformable Point Set Registration with Regularized Dynamic Graph CNNs for Large Lung Motion in COPD Patients.- Graph Convolutional Networks for Coronary Artery Segmentation in Cardiac CT Angiography.- Triplet Graph Convolutional Network forMulti-scale Analysis of Functional Connectivityusing Functional MRI.- Multi-Scale Graph Convolutional Network for Mild Cognitive Impairment Detection.- DeepBundle: Fiber Bundle Parcellation With Graph CNNs.- Identification of Functional Connectivity Features in Depression Subtypes Using a Data-Driven Approach.- Movie-watching fMRI Reveals Inter-subject Synchrony Alteration in Functional Brain Activity in ADHD.- Weakly- and Semi- Supervised Graph CNN for identifying Basal Cell Carcinoma on Pathological images.- Geometric Brain Surface Network For Brain Cortical Parcellation.- Automatic Detection of Craniomaxillofacial Anatomical Landmarks on CBCT Images using 3D Mask R-CNN.- Discriminative-Region-Aware Residual Network for Adolescent Brain Structure and Cognitive Development Analysis.- Graph Modeling for Identifying Breast Tumor Located in Dense Background of a Mammogram.- OCD Diagnosis via Smoothing Sparse Network and Stacked Sparse Auto-Encoder Learning.- A Longitudinal MRI Study of Amygdala and Hippocampal Subfields for Infants with Risk of Autism.- CNS: CycleGAN-assisted Neonatal Segmentation Model for Cross-Datasets.