Multiscale Multimodal Medical Imaging (häftad)
Fler böcker inom
Format
Häftad (Paperback / softback)
Språk
Engelska
Antal sidor
109
Utgivningsdatum
2019-12-20
Upplaga
1st ed. 2020
Förlag
Springer Nature Switzerland AG
Medarbetare
Leahy, Richard / Dong, Bin
Illustrationer
46 Illustrations, color; 9 Illustrations, black and white; X, 109 p. 55 illus., 46 illus. in color.
Dimensioner
234 x 156 x 6 mm
Vikt
177 g
Antal komponenter
1
Komponenter
1 Paperback / softback
ISBN
9783030379681
Multiscale Multimodal Medical Imaging (häftad)

Multiscale Multimodal Medical Imaging

First International Workshop, MMMI 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings

Häftad Engelska, 2019-12-20
683
  • Skickas inom 7-10 vardagar.
  • Gratis frakt inom Sverige över 199 kr för privatpersoner.
Kan tyvärr inte levereras innan julafton.
Finns även som
Visa alla 1 format & utgåvor
This book constitutes the refereed proceedings of the First International Workshop on Multiscale Multimodal Medical Imaging, MMMI 2019, held in conjunction with MICCAI 2019 in Shenzhen, China, in October 2019. The 13 papers presented were carefully reviewed and selected from 18 submissions. The MMMI workshop aims to advance the state of the art in multi-scale multi-modal medical imaging, including algorithm development, implementation of methodology, and experimental studies. The papers focus on medical image analysis and machine learning, especially on machine learning methods for data fusion and multi-score learning.
Visa hela texten

Passar bra ihop

  1. Multiscale Multimodal Medical Imaging
  2. +
  3. Clean Code: A Handbook Of Agile Software Craftsmanship

De som köpt den här boken har ofta också köpt Clean Code: A Handbook Of Agile Software Crafts... av Robert C Martin (häftad).

Köp båda 2 för 1042 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna

Innehållsförteckning

Multi-Modal Image Prediction via Spatial Hybrid U-Net.- Automatic Segmentation of Liver CT Image Based on Dense Pyramid Network.- OctopusNet: A Deep Learning Segmentation Network for Multi-modal Medical Images.- Neural Architecture Search for Optimizing Deep Belief Network Models of fMRI Data.- Feature Pyramid based Attention for Cervical Image Classification.- Single-scan Dual-tracer Separation Network Based on Pre-trained GRU.- PGU-net+: Progressive Growing of U-net+ for Automated Cervical Nuclei Segmentation.- Automated Classification of Arterioles and Venules for Retina Fundus Images using Dual Deeply-Supervised Network.- Liver Segmentation from Multimodal Images using HED-Mask R-CNN.- aEEG Signal Analysis with Ensemble Learning for Newborn Seizure Detection.- Speckle Noise Removal in Ultrasound Images Using A Deep Convolutional Neural Network and A Specially Designed Loss Function.- Automatic Sinus Surgery Skill Assessment Based on Instrument Segmentation and Tracking in Endoscopic Video.- U-Net Training with Instance-Layer Normalization.