Ophthalmic Medical Image Analysis (häftad)
Format
Häftad (Paperback / softback)
Språk
Engelska
Antal sidor
200
Utgivningsdatum
2021-09-21
Upplaga
1st ed. 2021
Förlag
Springer Nature Switzerland AG
Medarbetare
Garvin, Mona K. / MacGillivray, Tom
Illustrationer
7 Illustrations, black and white; IX, 200 p. 7 illus.
Dimensioner
234 x 156 x 11 mm
Vikt
304 g
Antal komponenter
1
Komponenter
1 Paperback / softback
ISBN
9783030869991
Ophthalmic Medical Image Analysis (häftad)

Ophthalmic Medical Image Analysis

8th International Workshop, OMIA 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings

Häftad Engelska, 2021-09-21
1149
  • Skickas inom 7-10 vardagar.
  • Gratis frakt inom Sverige över 199 kr för privatpersoner.
Kan levereras innan julafton!
Finns även som
Visa alla 1 format & utgåvor
This book constitutes the refereed proceedings of the 8th International Workshop on Ophthalmic Medical Image Analysis, OMIA 2021, held in conjunction with the 24th International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2021, in Strasbourg, France, in September 2021.* The 20 papers presented at OMIA 2021 were carefully reviewed and selected from 31 submissions. The papers cover various topics in the field of ophthalmic medical image analysis and challenges in terms of reliability and validation, number and type of conditions considered, multi-modal analysis (e.g., fundus, optical coherence tomography, scanning laser ophthalmoscopy), novel imaging technologies, and the effective transfer of advanced computer vision and machine learning technologies. *The workshop was held virtually.
Visa hela texten

Passar bra ihop

  1. Ophthalmic Medical Image Analysis
  2. +
  3. Myth Of Normal

De som köpt den här boken har ofta också köpt Myth Of Normal av Md Gabor Mate (inbunden).

Köp båda 2 för 1393 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna

  • Computational Retinal Image Analysis

    Emanuele Trucco, Tom MacGillivray, Yanwu Xu

    Computational Retinal Image Analysis: Tools, Applications and Perspectives gives an overview of contemporary retinal image analysis (RIA) in the context of healthcare informatics and artificial intelligence. Specifically, it provides a history of ...

  • Medical Image Understanding and Analysis

    Yalin Zheng, Bryan M Williams, Ke Chen

    This book constitutes the refereed proceedings of the 23rd Conference on Medical Image Understanding and Analysis, MIUA 2019, held in Liverpool, UK, in July 2019. The 43 full papers presented were carefully reviewed and selected from 70 submission...

Innehållsförteckning

Adjacent Scale Fusion and Corneal Position Embedding for Corneal Ulcer Segmentation.- Longitudinal detection of diabetic retinopathy early severity grade changes using deep learning.- Intra-operative OCT (iOCT) Image Quality Enhancement: A Super-Resolution Approach using High Quality iOCT 3D Scans.- Diabetic Retinopathy Detection based on Weakly Supervised Object Localization and Knowledge Driven Attribute Mining.- FARGO: A Joint Framework for FAZ and RV Segmentation from OCTA Images.- CDLRS: Collaborative Deep Learning Model with Joint Regression and Segmentation for Automatic Fovea Localization.- U-Net with Hierarchical Bottleneck Attention for Landmark Detection in Fundus Images of the Degenerated Retina.- Radial U-Net: Improving DMEK Graft Detachment Segmentation in Radial AS-OCT Scans.- Guided Adversarial Adaptation Network for Retinal and Choroidal Layer Segmentation.- Juvenile Refractive Power Prediction based on Corneal Curvature and Axial Length via a Domain Knowledge Embedding Network.- Peripapillary Atrophy Segmentation with Boundary Guidance.- Are cardiovascular risk scores from genome and retinal image complementary? A deep learning investigation in a diabetic cohort.- Dual-branch Attention Network and Atrous Spatial Pyramid Pooling for Diabetic Retinopathy Classification Using Ultra-Widefield Images.- Self-Adaptive Transfer Learning for Multicenter Glaucoma Classification in Fundus Retina Images.- Multi-Modality Images Analysis: A Baseline for Glaucoma Grading via Deep Learning.- Impact of data augmentation on retinal OCT image segmentation for diabetic macular edema analysis.- Representation and Reconstruction of Image-Based Structural Patterns of Glaucomatous Defects Using Only Two Latent Variables from a Variational Autoencoder.- Stacking Ensemble Learning in Deep Domain Adaptation for Ophthalmic Image Classification.- Attention Guided Slit Lamp Image Quality Assessment.- Robust Retinal Vessel Segmentation from a Data Augmentation Perspective.