Machine Learning for Solar Array Monitoring, Optimization, and Control (häftad)
Format
Häftad (Paperback / softback)
Språk
Engelska
Antal sidor
81
Utgivningsdatum
2020-08-31
Förlag
Springer International Publishing AG
Originalspråk
English
Medarbetare
Narayanaswamy, Vivek
Illustrationer
IX, 81 p.
Dimensioner
6 x 235 x 191 mm
Vikt
190 g
Antal komponenter
1
Komponenter
1 Paperback / softback
ISBN
9783031013775

Machine Learning for Solar Array Monitoring, Optimization, and Control

Häftad,  Engelska, 2020-08-31
609
  • Skickas från oss inom 10-15 vardagar.
  • Fri frakt över 249 kr för privatkunder i Sverige.
Finns även som
Visa alla 1 format & utgåvor
The efficiency of solar energy farms requires detailed analytics and information on each panel regarding voltage, current, temperature, and irradiance. Monitoring utility-scale solar arrays was shown to minimize the cost of maintenance and help optimize the performance of the photo-voltaic arrays under various conditions. We describe a project that includes development of machine learning and signal processing algorithms along with a solar array testbed for the purpose of PV monitoring and control. The 18kW PV array testbed consists of 104 panels fitted with smart monitoring devices. Each of these devices embeds sensors, wireless transceivers, and relays that enable continuous monitoring, fault detection, and real-time connection topology changes. The facility enables networked data exchanges via the use of wireless data sharing with servers, fusion and control centers, and mobile devices. We develop machine learning and neural network algorithms for fault classification. In addition, we use weather camera data for cloud movement prediction using kernel regression techniques which serves as the input that guides topology reconfiguration. Camera and satellite sensing of skyline features as well as parameter sensing at each panel provides information for fault detection and power output optimization using topology reconfiguration achieved using programmable actuators (relays) in the SMDs. More specifically, a custom neural network algorithm guides the selection among four standardized topologies. Accuracy in fault detection is demonstrate at the level of 90+% and topology optimization provides increase in power by as much as 16% under shading.
Visa hela texten

Passar bra ihop

  1. Machine Learning for Solar Array Monitoring, Optimization, and Control
  2. +
  3. Source Code

De som köpt den här boken har ofta också köpt Source Code av Bill Gates (inbunden).

Köp båda 2 för 908 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Innehållsförteckning

Acknowledgments.- Introduction.- Solar Array Research Testbed.- Fault Classification Using Machine Learning.- Shading Prediction for Power Optimization.- Topology Reconfiguration Using Neural Networks.- Summary.- Bibliography.- Authors' Biographies .