Continual Semi-Supervised Learning (häftad)
Format
Häftad (Paperback / softback)
Språk
Engelska
Antal sidor
135
Utgivningsdatum
2022-09-28
Upplaga
1st ed. 2022
Förlag
Springer International Publishing AG
Medarbetare
Cannons, Kevin / Lomonaco, Vincenzo
Illustrationer
43 Illustrations, color; 4 Illustrations, black and white; XIII, 135 p. 47 illus., 43 illus. in colo
Dimensioner
234 x 156 x 8 mm
Vikt
227 g
Antal komponenter
1
Komponenter
1 Paperback / softback
ISBN
9783031175862

Continual Semi-Supervised Learning

First International Workshop, CSSL 2021, Virtual Event, August 1920, 2021, Revised Selected Papers

Häftad,  Engelska, 2022-09-28
626
  • Skickas från oss inom 7-10 vardagar.
  • Fri frakt över 249 kr för privatkunder i Sverige.
Continual Semi-Supervised Learning Kan tyvärr inte längre levereras innan julafton.
This book constitutes the proceedings of the First International Workshop on Continual Semi-Supervised Learning, CSSL 2021, which took place as a virtual event during August 2021.The 9 full papers and 0 short papers included in this book were carefully reviewed and selected from 14 submissions.
Visa hela texten

Passar bra ihop

  1. Continual Semi-Supervised Learning
  2. +
  3. Atomic Habits

De som köpt den här boken har ofta också köpt Atomic Habits av James Clear (häftad).

Köp båda 2 för 826 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna

Innehållsförteckning

International Workshop on Continual Semi-Supervised Learning: Introduction, Benchmarks and Baselines.- Unsupervised Continual Learning Via Pseudo Labels.- Transfer and Continual Supervised Learning for Robotic Grasping through Grasping Features.- Unsupervised Continual Learning via Self-Adaptive Deep Clustering Approach.- Evaluating Continual Learning Algorithms by Generating 3D Virtual Environments.- A Benchmark and Empirical Analysis for Replay Methods in Continual Learning.- SPeCiaL: Self-Supervised Pretraining for Continual Learning.- Distilled Replay: Overcoming Forgetting through Synthetic Samples.- Self-supervised Novelty Detection for Continual Learning: A Gradient-based Approach Boosted by Binary Classification.