Chinese Computational Linguistics (häftad)
Format
Häftad (Paperback / softback)
Språk
Engelska
Antal sidor
351
Utgivningsdatum
2022-10-04
Upplaga
1st ed. 2022
Förlag
Springer International Publishing AG
Medarbetare
Liu, Yang / Che, Wanxiang
Illustrationer
76 Illustrations, color; 7 Illustrations, black and white; XVII, 351 p. 83 illus., 76 illus. in colo
Dimensioner
234 x 156 x 20 mm
Vikt
522 g
Antal komponenter
1
Komponenter
1 Paperback / softback
ISBN
9783031183140
Chinese Computational Linguistics (häftad)

Chinese Computational Linguistics

21st China National Conference, CCL 2022, Nanchang, China, October 14-16, 2022, Proceedings

Häftad Engelska, 2022-10-04
869
  • Skickas inom 7-10 vardagar.
  • Gratis frakt inom Sverige över 199 kr för privatpersoner.
Finns även som
Visa alla 1 format & utgåvor
This book constitutes the proceedings of the 21st China National Conference on Computational Linguistics, CCL 2022, held in Nanchang, China, in October 2022. The 22 full English-language papers in this volume were carefully reviewed and selected from 293 Chinese and English submissions. The conference papers are categorized into the following topical sub-headings: Linguistics and Cognitive Science; Fundamental Theory and Methods of Computational Linguistics; Information Retrieval, Dialogue and Question Answering; Text Generation and Summarization; Knowledge Graph and Information Extraction; Machine Translation and Multilingual Information Processing; Minority Language Information Processing; Language Resource and Evaluation; NLP Applications.
Visa hela texten

Passar bra ihop

  1. Chinese Computational Linguistics
  2. +
  3. Tomorrow, And Tomorrow, And Tomorrow

De som köpt den här boken har ofta också köpt Tomorrow, And Tomorrow, And Tomorrow av Gabrielle Zevin (häftad).

Köp båda 2 för 1025 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna

Innehållsförteckning

Linguistics and Cognitive Science.- Discourse Markers as the Classificatory Factors of Speech Acts.- Fundamental Theory and Methods of Computational Linguistics.- DIFM: An effective deep interaction and fusion model for sentence matching.- ConIsI: A Contrastive Framework with Inter-sentence Interaction for Self-supervised Sentence Representation.- Information Retrieval, Dialogue and Question Answering.- Data Synthesis and Iterative Refinement for Neural Semantic Parsing without Annotated Logical Forms.- EventBERT: Incorporating Event-based Semantics for Natural Language Understanding.- An Exploration of Prompt-Based Zero-Shot Relation Extraction Method.- Abstains from Prediction: Towards Robust Relation Extraction in Real World.- Using Extracted Emotion Cause to Improve Content-Relevance for Empathetic Conversation Generation.- Text Generation and Summarization.- To Adapt or to Fine-tune: A Case Study on Abstractive Summarization.- Knowledge Graph and Information Extraction.- MRC-based Medical NER with Multi-task Learning and Multi-strategies.- A Multi-Gate Encoder for Joint Entity and Relation Extraction.- Improving Event Temporal Relation Classification via Auxiliary Label-Aware Contrastive Learning.- Machine Translation and Multilingual Information Processing.- Towards Making the Most of Pre-trained Translation Model for Quality Estimation.- Supervised Contrastive Learning for Cross-lingual Transfer Learning.- Minority Language Information Processing.- Interactive Mongolian Question Answer Matching Model Based on Attention Mechanism in the Law Domain.- Language Resource and Evaluation.- TCM-SD: A Benchmark for Probing Syndrome Differentiation via Natural Language Processing.- COMPILING: A Benchmark Dataset for Chinese Complexity Controllable Definition Generation.- NLP Applications.- Can We Really Trust Explanations? Evaluating the Stability of Feature Attribution Explanation Methods via Adversarial Attack.- Dynamic Negative Example Construction for Grammatical Error Correction using Contrastive Learning.- SPACL: Shared-Private Architecture based on Contrastive Learning for Multi-domain Text Classification.- Low-Resource Named Entity Recognition Based on Multi-hop Dependency Trigger.- Fundamental Analysis based Neural Network for Stock Movement Prediction.