Comparative Efficiency in Data Envelopment Analysis Based on Ratio Analysis (häftad)
Format
Inbunden (Hardback)
Språk
Engelska
Antal sidor
180
Utgivningsdatum
2023-10-02
Upplaga
2023 ed.
Förlag
Springer International Publishing AG
Illustrationer
29 Illustrations, color; 3 Illustrations, black and white; XIV, 180 p. 32 illus., 29 illus. in color
Dimensioner
234 x 156 x 13 mm
Vikt
454 g
Antal komponenter
1
Komponenter
1 Hardback
ISBN
9783031431807

Comparative Efficiency in Data Envelopment Analysis Based on Ratio Analysis

Inbunden,  Engelska, 2023-10-02
1594
  • Skickas från oss inom 10-15 vardagar.
  • Fri frakt över 249 kr för privatkunder i Sverige.
Finns även som
Visa alla 1 format & utgåvor
The combination of DEA and ratio analysis is introduced as a suitable field for evaluating the performance of DMUs. In this regard, DEA-R is also proposed as a hybrid technique for calculating efficiency, ranking DMUs, and finding efficient faces. Therefore, the relationship between DEA and DEA-R provides a suitable field for researchers in the field of evaluating the performance of DMUs. The audience of this book is not limited to researchers in mathematics fields, but experts and students in industrial engineering and management fields also benefit from the topics of this book.
Visa hela texten

Passar bra ihop

  1. Comparative Efficiency in Data Envelopment Analysis Based on Ratio Analysis
  2. +
  3. Nexus

De som köpt den här boken har ofta också köpt Nexus av Yuval Noah Harari (häftad).

Köp båda 2 för 1833 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Innehållsförteckning

Relationship between DEA models without explicit inputs and DEA-R models.- Finding efficient surfaces in DEA-R models.- Cost and revenue efficiency in DEA-R models.- A Novel Slack-Based Model for Efficiency and Super-efficiency in DEA-R.- A Multi-Criteria Ratio-Based Approach for Two-Stage Data Envelopment Analysis.- A novel network DEA-R model for evaluating hospital services supply chain performance.- A novel inverse DEA-R model for inputs/output estimation.- Evaluation of Two-Stage Networks based on Average Efficiency Using DEA and DEA-R with Fuzzy Data.- Stochastic network DEA-R models for two-stage systems.