- Format
- Häftad (Paperback / softback)
- Språk
- Engelska
- Antal sidor
- 280
- Utgivningsdatum
- 2016-09-27
- Upplaga
- 1st ed. 2016
- Förlag
- Springer International Publishing AG
- Medarbetare
- Carneiro, Gustavo (ed.), Mateus, Diana (ed.), Loïc, Peter (ed.), Bradley, Andrew (ed.), Tavares, João Manuel R. S. (ed.), Belagiannis, Vasileios (ed.), Papa, João Paulo (ed.), Nascimento, Jacinto C. (ed.)
- Illustratör/Fotograf
- Bibliographie
- Illustrationer
- 115 Illustrations, black and white; XIII, 280 p. 115 illus.
- Dimensioner
- 234 x 156 x 16 mm
- Vikt
- Antal komponenter
- 1
- Komponenter
- 1 Paperback / softback
- ISBN
- 9783319469751
- 422 g
Du kanske gillar
-
Deep Learning and Data Labeling for Medical Applications
First International Workshop, LABELS 2016, and Second International Workshop, DLMIA 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 21, 2016, Proceedings
780- Skickas inom 7-10 vardagar.
- Gratis frakt inom Sverige över 199 kr för privatpersoner.
Finns även somPassar bra ihop
De som köpt den här boken har ofta också köpt Java How to Program, Late Objects, Global Edition av Paul Deitel (häftad).
Köp båda 2 för 1582 krKundrecensioner
Har du läst boken? Sätt ditt betyg »Fler böcker av författarna
-
Deep Learning and Convolutional Neural Networks for Medical Image Computing
Le Lu, Yefeng Zheng, Gustavo Carneiro, Lin Yang
-
Combinatorial And Toric Homotopy: Introductory Lectures
Alastair Darby, Jelena Grbic, Zhi Lu, Jie Wu
-
Welcome To Jesusland!
Chris Harper, Andrew Bradley, Erik Walker
-
How Much Is Enough?
Andrew Bradley
Innehållsförteckning
Active learning.- Semi-supervised learning.- Reinforcement learning.- Domain adaptation and transfer learning.- Crowd-sourcing annotations and fusion of labels from different sources.- Data augmentation.- Modelling of label uncertainty.- Visualization and human-computer interaction.- Image description.- Medical imaging-based diagnosis.- Medical signal-based diagnosis.- Medical image reconstruction and model selection using deep learning techniques.- Meta-heuristic techniques for fine-tuning.- Parameter in deep learning-based architectures.- Applications based on deep learning techniques.