Deep Learning and Data Labeling for Medical Applications (häftad)
Fler böcker inom
Format
Häftad (Paperback / softback)
Språk
Engelska
Antal sidor
280
Utgivningsdatum
2016-09-27
Upplaga
1st ed. 2016
Förlag
Springer International Publishing AG
Medarbetare
Carneiro, Gustavo (ed.), Mateus, Diana (ed.), Loïc, Peter (ed.), Bradley, Andrew (ed.), Tavares, João Manuel R. S. (ed.), Belagiannis, Vasileios (ed.), Papa, João Paulo (ed.), Nascimento, Jacinto C. (ed.)
Illustratör/Fotograf
Bibliographie
Illustrationer
115 Illustrations, black and white; XIII, 280 p. 115 illus.
Dimensioner
234 x 156 x 16 mm
Vikt
422 g
Antal komponenter
1
Komponenter
1 Paperback / softback
ISBN
9783319469751
Deep Learning and Data Labeling for Medical Applications (häftad)

Deep Learning and Data Labeling for Medical Applications

First International Workshop, LABELS 2016, and Second International Workshop, DLMIA 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 21, 2016, Proceedings

Häftad Engelska, 2016-09-27
780
  • Skickas inom 7-10 vardagar.
  • Gratis frakt inom Sverige över 199 kr för privatpersoner.
Finns även som
Visa alla 1 format & utgåvor
This book constitutes the refereed proceedings of two workshops held at the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016, in Athens, Greece, in October 2016: the First Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, LABELS 2016, and the Second International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2016. The 28 revised regular papers presented in this book were carefully reviewed and selected from a total of 52 submissions. The 7 papers selected for LABELS deal with topics from the following fields: crowd-sourcing methods; active learning; transfer learning; semi-supervised learning; and modeling of label uncertainty.The 21 papers selected for DLMIA span a wide range of topics such as image description; medical imaging-based diagnosis; medical signal-based diagnosis; medical image reconstruction and model selection using deep learning techniques; meta-heuristic techniques for fine-tuning parameter in deep learning-based architectures; and applications based on deep learning techniques.
Visa hela texten

Passar bra ihop

  1. Deep Learning and Data Labeling for Medical Applications
  2. +
  3. Java How to Program, Late Objects, Global Edition

De som köpt den här boken har ofta också köpt Java How to Program, Late Objects, Global Edition av Paul Deitel (häftad).

Köp båda 2 för 1582 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna

Innehållsförteckning

Active learning.- Semi-supervised learning.- Reinforcement learning.- Domain adaptation and transfer learning.- Crowd-sourcing annotations and fusion of labels from different sources.- Data augmentation.- Modelling of label uncertainty.- Visualization and human-computer interaction.- Image description.- Medical imaging-based diagnosis.- Medical signal-based diagnosis.- Medical image reconstruction and model selection using deep learning techniques.- Meta-heuristic techniques for fine-tuning.- Parameter in deep learning-based architectures.- Applications based on deep learning techniques.