- Format
- Häftad (Paperback / softback)
- Språk
- Engelska
- Antal sidor
- 590
- Utgivningsdatum
- 2012-08-08
- Upplaga
- 2012 ed.
- Förlag
- Springer-Verlag Berlin and Heidelberg GmbH & Co. K
- Medarbetare
- Duch, Wlodzislaw (ed.), Masulli, Francesco (ed.), Palm, Günther (ed.), Villa, Alessandro E. P. (ed.), Érdi, Péter (ed.)
- Illustrationer
- 172 Illustrations, black and white; XXVIII, 590 p. 172 illus.
- Dimensioner
- 234 x 156 x 31 mm
- Vikt
- Antal komponenter
- 1
- Komponenter
- 1 Paperback / softback
- ISBN
- 9783642332654
- 849 g
Du kanske gillar
-
Reality+
David J Chalmers
InbundenHalo Encyclopedia
Microsoft
InbundenArtificial Neural Networks and Machine Learning -- ICANN 2012
22nd International Conference on Artificial Neural Networks, Lausanne, Switzerland, September 11-14, 2012, Proceedings, Part II
1049- Skickas inom 10-15 vardagar.
- Gratis frakt inom Sverige över 199 kr för privatpersoner.
Finns även somPassar bra ihop
De som köpt den här boken har ofta också köpt HTML & CSS: Design and Build Web Sites av Jon Duckett (häftad).
Köp båda 2 för 1298 krKundrecensioner
Har du läst boken? Sätt ditt betyg »Fler böcker av författarna
-
Neural Organization
Michael A Arbib, Peter Erdi, Alice Szentagothai
-
Complexity Explained
Peter Erdi
-
Artificial Neural Networks and Machine Learning -- ICANN 2013
Valeri Mladenov, Petia Koprinkova-Hristova, Gunther Palm, Alessandro Villa, Bruno Apolloni
-
Advances in Cognitive Neurodynamics (VII)
Alessandra Lintas, Paolo Enrico, Xiaochuan Pan, Rubin Wang, Alessandro Villa
Innehållsförteckning
Complex-Valued Multilayer Perceptron Search Utilizing Eigen Vector Descent and Reducibility.- Theoretical Analysis of Function of Derivative Term in On-Line Gradient Descent Learning.- Some Comparisons of Networks with Radial and Kernel.- Multilayer Perceptron for Label Ranking.- Electricity Load Forecasting: A Weekday-Based.- Adaptive Exploration Using Stochastic Neurons.- Comparison of Long-Term Adaptivity for Neural Networks.- Simplifying ConvNets for Fast Learning.- A Modified Artificial Fish Swarm Algorithm for the Optimization of Extreme Learning Machines.- Robust Training of Feedforward Neural Networks Using Combined Online/Batch Quasi-Newton Techniques.- Estimating a Causal Order among Groups of Variables in Linear Models.- Training Restricted Boltzmann Machines with Multi-tempering: Harnessing Parallelization.- A Computational Geometry Approach for Pareto-Optimal Selection of Neural Networks.- Learning Parameters of Linear Models in Compressed Parameter Space.- Control of a Free-Falling Cat by Policy-Based Reinforcement Learning.- Gated Boltzmann Machine in Texture Modeling.- Neural PCA and Maximum Likelihood Hebbian Learning on the GPU.- Construction of Emerging Markets Exchange Traded Funds Using Multiobjective Particle Swarm Optimisation.- The Influence of Supervised Clustering for RBFNN Centers Definition: A Comparative Study.- Nested Sequential Minimal Optimization for Support Vector Machines.- Random Subspace Method and Genetic Algorithm Applied to a LS-SVM Ensemble.- Text Recognition in Videos Using a Recurrent Connectionist Approach.- An Investigation of Ensemble Systems Applied to Encrypted and Cancellable Biometric Data.- New Dynamic Classifiers Selection Approach for Handwritten Recognition.- Vector Perceptron Learning Algorithm Using Linear Programming.- TrueSkill-Based Pairwise Coupling for Multi-class Classification.- Analogical Inferences in the Family Trees Task: A Review.- An Efficient Way of Combining SVMs for Handwritten Digit Recognition.- Comparative Evaluation of Regression Methods for 3D-2D Image Registration.- A MDRNN-SVM Hybrid Model for Cursive Offline Handwriting Recognition.- Extraction of Prototype-Based Threshold Rules Using Neural Training Procedure.- Instance Selection with Neural Networks for Regression Problems.- A New Distance for Probability Measures Based on the Estimation of Level Sets.- Low Complexity Proto-Value Function Learning from Sensory Observations with Incremental Slow Feature Analysis.- Improving Neural Networks Classification through Chaining.- Feature Ranking Methods Used for Selection of Prototypes.- A "Learning from Models" Cognitive Fault Diagnosis System.- Improving ANNs Performance on Unbalanced Data with an AUC-Based Learning Algorithm.- Learning Using Privileged Information in Prototype Based Models.- A Sparse Support Vector Machine Classifier with Nonparametric Discriminants.- Training Mahalanobis Kernels by Linear Programming.- Correntropy-Based Document Clustering via Nonnegative Matrix Factorization.- SOMM - Self-Organized Manifold Mapping.- Self-Organizing Map and Tree Topology for Graph Summarization.- Variable-Sized Kohonen Feature Map Probabilistic Associative Memory.- Learning Deep Belief Networks from Non-stationary Streams.- Separation and Unification of Individuality and Collectivity and Its Application to Explicit Class Structure in Self-Organizing Maps.- Autoencoding Ground Motion Data for Visualisation.- Examining an Evaluation Mechanism of Metaphor Generation with Experiments and Computational Model Simulation.- Pairwise Clustering with t-PLSI.- Selecting -Divergence for Nonnegative Matrix Factorization by Score Matching.- Neural Networks for Proof-Pattern Recognition.- Using Weighted Clustering and Symbolic Data to Evaluate Institutes Scientific Production.- Comparison of Input Data Compression Methods in Neural Network Solution of Inverse Problem in Laser Raman Spectroscopy of Natural Waters.- New Approach for Clustering Relational