From Opinion Mining to Financial Argument Mining (häftad)
Format
Häftad (Paperback / softback)
Språk
Engelska
Antal sidor
95
Utgivningsdatum
2021-05-21
Upplaga
1st ed. 2021
Förlag
Springer Verlag, Singapore
Medarbetare
Huang, Hen-Hsen / Chen, Hsin-Hsi
Illustrationer
21 Illustrations, color; 3 Illustrations, black and white; X, 95 p. 24 illus., 21 illus. in color.
Dimensioner
234 x 156 x 6 mm
Vikt
163 g
Antal komponenter
1
Komponenter
1 Paperback / softback
ISBN
9789811628801
From Opinion Mining to Financial Argument Mining (häftad)

From Opinion Mining to Financial Argument Mining

Häftad Engelska, 2021-05-21
416
  • Skickas inom 7-10 vardagar.
  • Gratis frakt inom Sverige över 199 kr för privatpersoner.
Kan tyvärr inte levereras innan julafton.
Finns även som
Visa alla 1 format & utgåvor
Opinion mining is a prevalent research issue in many domains. In the financial domain, however, it is still in the early stages. Most of the researches on this topic only focus on the coarse-grained market sentiment analysis, i.e., 2-way classification for bullish/bearish. Thanks to the recent financial technology (FinTech) development, some interdisciplinary researchers start to involve in the in-depth analysis of investors' opinions. These works indicate the trend toward fine-grained opinion mining in the financial domain. When expressing opinions in finance, terms like bullish/bearish often spring to mind. However, the market sentiment of the financial instrument is just one type of opinion in the financial industry. Like other industries such as manufacturing and textiles, the financial industry also has a large number of products. Financial services are also a major business for many financial companies, especially in the context of the recent FinTech trend. For instance, many commercial banks focus on loans and credit cards. Although there are a variety of issues that could be explored in the financial domain, most researchers in the AI and NLP communities only focus on the market sentiment of the stock or foreign exchange. This open access book addresses several research issues that can broaden the research topics in the AI community. It also provides an overview of the status quo in fine-grained financial opinion mining to offer insights into the futures goals. For a better understanding of the past and the current research, it also discusses the components of financial opinions one-by-one with the related works and highlights some possible research avenues, providing a research agenda with both micro- and macro-views toward financial opinions.
Visa hela texten

Passar bra ihop

  1. From Opinion Mining to Financial Argument Mining
  2. +
  3. Clean Code: A Handbook Of Agile Software Craftsmanship

De som köpt den här boken har ofta också köpt Clean Code: A Handbook Of Agile Software Crafts... av Robert C Martin (häftad).

Köp båda 2 för 775 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna

  • The Outreach of Digital Libraries: A Globalized Resource Network

    Hsin-Hsi Chen, Gobinda Chowdhury

    This book constitutes the refereed proceedings of the 14th International Conference on Asia-Pacific Digital Libraries, ICADL 2012, held in Taipei, China, in November 2012. The 27 revised full papers, 17 revised short papers, and 13 poster papers w...

  • Outreach of Digital Libraries: A Globalized Resource Network

    Hsin-Hsi Chen, Gobinda Chowdhury

    This book constitutes the refereed proceedings of the 14th International Conference on Asia-Pacific Digital Libraries, ICADL 2012, held in Taipei, China, in November 2012. The 27 revised full papers, 17 revised short papers, and 13 poster papers w...

Övrig information

Chung-Chi Chen is a Ph.D. candidate in the Department of Computer Science and Information Engineering at National Taiwan University and a lecturer in the Department of Quantitative Finance, National Tsing Hua University. His research focuses on financial opinion mining and numeral understanding. He is the organizer of FinNum shared task series in NTCIR (2018-2020) and the FinNLP workshop series in IJCAI (2019-2020). He won the 1st prize in both the Jih Sun & Microsoft FinTech Hackathon (2019) and the Standard Chartered FinTech competition (2018) and the 2nd prize in both the Jih Sun & Microsoft FinTech Hackathon (2018) and the E.SUN FHC FinTech Hackathon (2017). Hen-Hsen Huang received the Ph.D. degree in Computer Science and Information Engineering from National Taiwan University, Taiwan. Dr. Huang is currently an assistant professor in the Department of Computer Science at National Chengchi University. His research interests include natural language processing, computational linguistics, and information retrieval. His work has been published in SCI/SSCI journals and international conferences, including WWW, IJCAI, ACL, CIKM, and COLING. Dr. Huang's award and honors include the Honorable Mention of Doctoral Dissertation Award of ACLCLP in 2014 and the Honorable Mention of Master Thesis Award of ACLCLP in 2008. He serves as the registration chair of TAAI 2017, and as PC members of ACL2018, NAACL 2018, ACL 2017, COLING 2016, NAACL 2016, and ACL 2015, and will be general co-chair of SIGIR 2023. Hsin-Hsi Chen received the Ph.D. degree in electrical engineering in 1988 from National Taiwan University, Taiwan. He is a distinguished professor in Department of Computer Science and Information Engineering, National Taiwan University. His research interests are natural language processing, information retrieval and extraction, and web mining. Dr. Chen served as senior PC members of ACM SIGIR 2006, 2007, 2008 and 2009, area/track chairs of AAAI 2020, AACL 2020, EMNLP 2018, ACL 2012, ACL-IJCNLP 2009 and ACM CIKM 2008, and PC members of many conferences. He received Google research awards in 2007 and 2012, awards of Microsoft Research Asia in 2008 and 2009, MOST Outstanding Research Award in 2017, and the AmTRAN Chair Professorship in 2018.

Innehållsförteckning

Introduction.- Modeling Financial Opinions.- Sources and Corpora.- Organizing Financial Opinions.- Numerals in Financial Narratives.- FinTech Applications.- Perspectives and Conclusion.